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ABSTRACT 
Smart thermostats have been proposed as a way to reduce 
energy consumption in the home. While occupancy-based 
thermostat control and scheduling has been shown to provide 
energy savings, more recent work in comfort-aware 
thermostats promises to provide even greater savings. 
Comfort awareness and adaptive thermal comfort models, 
combined with the mixed-initiative eco-coaching approach 
to thermostat control, offer a promising approach to 
optimizing savings by offering both schedule and setpoint 
recommendations and actionable plans. In this paper, we 
investigate the design space of comfort-aware eco-coaching 
thermostats. Through a user enactment study wherein 11 
participants encountered fifteen design probes covering 
various design attributes and interaction scenarios, we 
uncover insights on how to design such thermostats in a way 
that respect people’s values relating to comfort, 
sustainability, control, convenience, and allocation of agency 
while also encouraging more energy efficient behaviors.  
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INTRODUCTION 
In the U.S., the domestic sector consumes more than 20% of 
the total energy produced, and half of this is consumed by 
heating and cooling usage [35]. The high level of usage can 
be reduced. Researchers have pointed out that consumption 
is highly dependent on occupants’ behaviors [29], as well as 
the inefficient use of existing manual and programmable 
thermostats [20,33].  

Over the past decade, numerous intelligent thermostats have 
thus been proposed to mediate temperature control, helping 
people to save energy while maintaining comfort 

(e.g., [12,18,21,28]). Such thermostats may have occupancy-
responsive control (e.g., [17]), learning capability 
(e.g., [1,36]), and/or eco-coaching features (e.g., [25]). 
However, there are still two problems with these thermostats 
that limit the energy savings that can be achieved. 

First, the majority of intelligent thermostats assume 
occupants have a fixed temperature preference at home while 
in reality this can be quite dynamic, changing depending on 
occupants’ activities and other contextual factors [22]. While 
researchers have recently explored comfort-aware 
thermostats––thermostats that can react to people’s changing 
preferences by predicting their comfort based on sensed 
conditions (e.g., [9])—such thermostats have been 
principally studied in office settings, and are not suitable for 
the home due to the sensors used and low accuracy [15].  

Second, a fundamental assumption underpinning most smart 
thermostat development is the view that occupants are 
primarily receivers of comfort (i.e., comfort is given by the 
heating and cooling system), rather than active agents that 
can utilize other means, such as changing clothes, to 
maintain their comfort. Researchers like Clear et al. [5] have 
therefore proposed to investigate approaches based on 
adaptive thermal comfort [16], an approach that emphasizes 
occupants’ agency in performing adaptive behaviors to 
achieve comfort, and challenges the notion that comfort and 
controlled indoor temperatures exist in a fixed relationship.  

Our work in this paper proceeds from the observation that a 
comfort-aware approach can be combined with eco-
coaching [25,34] to provide additional opportunities for 
reducing heating- and cooling-related energy waste. In the 
eco-coaching approach, an intelligent system models user 
behavior and produces recommendations for energy-saving 
actions that can be taken by users. Recent work has shown 
that eco-coaching can save 5-12% of energy expended for 
cooling when recommending thermostat control 
schedules [25], and that users find eco-coaching to ease the 
selection and execution of more energy-efficient 
actions [34]. Previous work, however, only examined 
recommendations based on occupancy schedules—the 
opportunity for gaining efficiency by optimizing temperature 
setpoints was not explored. By including knowledge of 
users’ comfort preferences and recommendations derived 
from the adaptive thermal comfort model, additional savings 
can be realized. 

Thus in this paper, we report our initial steps in exploring the 
design space of comfort-aware eco-coaching thermostats, 
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i.e. thermostats that seek to synthesize comfort-awareness, 
adaptive thermal comfort, and the eco-coaching approach.  

Our work makes two contributions: 1) We illustrate the 
design space of comfort-aware eco-coaching thermostats by 
systematically mapping the design space and producing 
fifteen diverse prototypes representing key points in the 
space; 2) By further carrying out User Enactments [6,23,24] 
wherein we engaged 11 thermostat users in scenarios 
involving the prototypes we had developed, we were able to 
uncover underlying values and tensions that are likely to 
drive user reactions to different design directions if and when 
they are encountered in the wild. Our work provides a critical 
first step towards the realization of comfort-aware eco-
coaching thermostats, and provides valuable insights for 
future system development and field deployments.  

RELATED WORK 
Many researchers have developed smart thermostats to help 
reduce energy consumption and increase 
comfort [2,9,12,17,18,21,25,28]. These smart systems have 
achieved their goals in various ways, including the ability to: 
react to residents’ occupancy status (e.g., [28]), adapt to 
building characteristics or user preference (e.g., [36]); and 
respond to people’s thermal comfort (e.g., [9]). 

Occupancy-based thermostats [12,17,18,28] focus on 
reducing the heating or cooling time when people are away 
from home. Most of these systems make a simplistic 
assumption that people are satisfied with a fixed temperature 
when they are at home. While occupancy-based thermostats 
have been shown to be successful in reducing energy usage, 
this simplistic assumption misses a chance for both further 
energy savings and increased comfort, as in reality people’s 
temperature preference at home is dynamic according to their 
activities and other context [13].  

Preference-based thermostats may be able to cope with 
people’s dynamic preferences, for example, by learning the 
desired setpoints at different times of day (e.g., [36]) or at 
different pricing conditions (e.g., [1]). However, users still 
struggle to understand the smart features of such thermostats, 
leading to suboptimal use or abandonment [33]. In addition, 
current preference-based thermostats only scratch the surface 
of how smart thermostats can interact with their users. While 
this work largely focuses on thermostats that learn people’s 
preferences passively, more recent work on eco-
coaching [25,34] finds that thermostats that provide 
actionable recommendations based on their learning 
capability are more promising in reducing energy 
consumption.   

Comfort-aware thermostats, although a less explored 
alternative, provide the potential of reacting to people’s 
changing temperature preferences. Such thermostats infer  
occupants’ thermal sensation in real-time using wearable and 
indoor sensors and predictive models to map environmental 
conditions and user activity onto inferred thermal 
sensation [9]. While this approach seems promising [15], the 

imperfection of comfort inference means that full automation 
is infeasible. Researchers have proposed employing mixed-
initiative design in creating smart thermostats [25,33], 
emphasizing the collaboration between machines and 
humans to reach a shared goal. Eco-coaching [25,34], 
employs a mixed-initiative approach wherein the system 
offers suggestions for actions to take and users are held 
responsible for finalizing the decisions. Although this 
approach is helpful for dealing with misprediction, 
it has not yet been applied to design comfort-aware 
thermostats, as previous implementations were constrained 
to suggesting timing for setbacks (energy-efficient away and 
sleep temperatures) rather than alternative temperature 
settings for times when the home is occupied. 

While researchers have demonstrated that occupancy-based 
and comfort-aware thermostats can reduce energy 
consumption by 7-57% (e.g., [9,28]), the fundamental design 
philosophy that underpins such thermostats has been 
criticized on the basis that it limits the potential to reach more 
sustainable ways of living [4,5,16]. Past work on smart 
thermostats assume comfort as a product, something that is 
delivered to us by the indoor environment. However, recent 
research on adaptive thermal comfort has proposed to 
reconsider comfort as a goal, a view that emphasizes the role 
of human agency: occupants can leverage different adaptive 
behaviors such as adjusting their clothing level to reach 
comfort in addition to cranking their thermostats up or down. 
In alignment with this view, Clear et al. [5] have proposed to 
create systems that facilitate adaptive behaviors and 
temperature variations, yet limited work has been done in 
exploring this design opportunity. 

In this work, we therefore explore comfort-aware 
thermostats’ potential in reacting to occupants’ dynamic 
temperature preferences while accommodating 
mispredictions by leveraging eco-coaching. We also broaden 
the concept of eco-coaching to include the view of comfort 
as a goal rather than just a product. Therefore, rather than 
only suggesting to users how to control their temperature 
setpoints, we explore thermostats that might also encourage 
adaptive behaviors such as changing clothing or drinking 
warm beverages. We call such thermostats comfort-aware 
eco-coaching thermostats.  

METHOD & DESIGN 
The aim of our study was to advance understanding of how 
to design comfort-aware eco-coaching thermostats. While 
others have explored technologies that seek to challenge or 
overturn people’s expectation or values around thermal 
comfort (e.g., [4]), we sought to explore more subtle 
approaches that work within the existing constraints of 
people’s cultural expectations of mechanically-mediated 
thermal comfort. We thus pursued designs that encourage 
more efficient behaviors through being adaptive while 
respecting people’s expectation on thermal comfort.  

To illuminate the design space and understand how people 
would react to possible design approaches, we chose user 



enactments as our method [6,24]. User enactments allow 
researchers to rapidly explore how potential users’ values, 
expectations, and social identities inform their reactions to 
different design possibilities. Through simulating real world 
scenarios involving potential technological futures, 
researchers gain insights into how users might react to 
technology designed with different attributes, as well as the 
values users bring to bear when assessing design alternatives. 
While prior thermostat work has employed field 
deployments to validate the effectiveness of various designs 
(e.g., [1,25]), our designs require significantly more complex 
technology (e.g., personalized comfort prediction and room-
level localization) which makes deployment a less 
reasonable action to take as a first step. Applying user 
enactments in understanding users’ values is essential to 
ensure that costly system development and field deployment 
efforts are well-grounded and more likely to succeed. 

Our study involved three main steps. First, through 
synthesizing prior literature and conducting multiple rounds 
of brainstorming, affinity diagramming, and expert review, 
we delineated the design space of comfort-aware eco-
coaching thermostats. We distilled three key design 
dimensions (Table 1) that guided our later designs and 
summarized the technology constraints of state-of-the-art 
smart thermostats and comfort prediction approaches. 
Second, we operationalized our concept through iterative 
prototyping. We generated numerous ideas and low fidelity 
prototypes before creating fifteen design probes (D) in the 
form of high fidelity interactive prototypes (Figure 1). Third, 
we conducted user enactments to qualitatively probe our 
target users’ opinions: how they perceive the different design 
concepts and how these designs might encourage or impede 
users from reaching higher energy savings.  

Reef: Thermostat Designs 
We first identified the key technology constraints of state-of-
the-art smart thermostats and comfort prediction, focusing on 
constraints that are likely to persist for the foreseeable future. 
We used such constraints to guide the design of Reef, a 
hypothetical thermostat that can predict people’s comfort, 
react, and encourage energy savings. First, we assumed Reef 
employs a sensing approach similar to Huang et al. [15], 
namely, it relies on wearable devices that detect activity level 

and near body temperature (e.g., [37]), as well as in-home 
sensors that capture humidity and temperature (e.g., [38]). 
Second, we assumed that Reef is able to detect and predict 
people’s house occupancy status, room-level location and 
sleep status, which have been demonstrated feasible in prior 
research [19,25]. Therefore, Reef can use its users’ status to 
determine whether to trigger an Away, Asleep or Awake 
mode (i.e., users are at home but not sleeping). Third, Reef 
can learn personalized comfort preferences by soliciting 
feedback from users, ultimately generating comfort 
predictions on a five-level scale ranging from uncomfortably 
cold to uncomfortably warm [15]. Fourth, due to limited 
sensing and inference capabilities, Reef will sometimes 
make mispredictions (e.g., predicting occupants are 
comfortable while they are slightly cold) [15]. Finally, as the 
smartphone-based control has emerged as a common 
approach for interacting with smart thermostats (e.g., [36]), 
we expected users to interact with Reef through a 
smartphone application. Our interfaces were therefore all 
designed for mobile screens.  

Through prior literature, we identified three key design 
dimensions for smart thermostats (see Table 1). These 
dimensions facilitated the systematic generation of fifteen 
distinct interface prototypes. The three design dimensions we 
chose include eco-coaching style, persuasive strategy, and 
timing of interaction. Here we will describe these three 
design dimensions in detail as well as their relationship with 
the various prototypes we created.

 

Figure 1: Selected interfaces for our 15 prototypes. We skip D11 as it looks the same as D5 but was tested in a different scenario.  

Eco-
Coaching  

Style 

Persuasive 
Strategy 

Timing of Interaction 
Real-
time 

Control 

Short 
Engag
ement 

Plan. Mis-
pred. Refl. 

Informative NA D1     
RT   D7  D13 

Advisory 
NA  D4 D8 D10  

RT D2    D15 

Proactive 
NA      

RT  D5 D9 D11  

Adaptive 
NA     D14 

RT D3 D6  D12  

Table 1: The key design dimensions and the corresponding 
prototypes. NA: Norm-Activation, RT: Rational Thinking. 



 



Eco-coaching style refers to the approach Reef takes to 
communicate with users. At one end of the spectrum, Reef 
seeks to be informative by showing useful eco-feedback to 
help decision-making, letting users remain in 
control [11,14,26]. This information might include comfort 
level prediction, estimated financial savings, and 
environmental impact. While respecting users’ agency was 
one reason that we explored such a hands-off approach, this 
approach also handles inaccuracy. Due to the inevitability of 
imperfect prediction, it may not be most favorable for Reef 
to automatically change the temperature according to its 
comfort prediction [8]. One prototype that implements such 
an approach is D1, which shows the predicted comfort of 
different household members at home in four colors. 
Similarly, D9 shows users the predicted comfort level in 
different rooms at different settings while requiring them to 
manually create their temperature schedules. At the other end 
of the spectrum, Reef can be proactive [6,27], making 
decisions for users and only informing them about the 
benefits. In some situations users might feel that the benefits 
of automation outweigh the cost of minor mispredictions. D5 
and D7 are two prototypes that implement the proactive 
approach. In D5, Reef identifies that the user has been 
comfortable for a few days and therefore automatically 
lowers the setpoint for an evening. It only informs the user 
about the decision and the benefits without first asking 
permission. Similarly, in D7, Reef automatically generates 
and activates an energy-saving schedule after observing 
occupants’ behaviors and comfort level for a month.    

A third approach lies in the middle of these extremes, 
offering suggestions to users and letting them make the final 
decision [25,34]. Here we probed two possible design 
directions: one is to offer suggestions directly related to 
temperature settings (Advisory), the other is to encourage 
adaptive behaviors [5] (Adaptive). For the former type, two 
different saving suggestions were implemented in Reef’s 
prototypes, namely, personalized saving modes and short-
term variation. D2, D4 and D8 are examples that implement 
such strategies. Inspired by ThermoCoach’s [25] saving 
suggestion design, Reef offers four similar modes: high 
energy saving, energy saving, regular and warm. Each mode 
has a corresponding temperature when people are at home 
and awake (i.e., the Awake setpoint). This temperature is 
determined by Reef’s learning of occupants’ comfort. In 
winter, for example, when running in regular mode Reef will 
pick a temperature that the user mostly feels comfortable 
with, and in energy saving mode Reef will find an Awake 
setpoint that is likely to feel slightly cold. The second 
strategy is short-term variation, meaning that Reef might 
suggest users to lower their setpoints for only a short period 
of time (e.g., a night or a day). The rationale is that while 
people care about their own comfort, they might be willing 
to lower their expectation shortly for saving energy. Whereas 
in some prototypes Reef suggests users to directly change 
thermostat settings, in others Reef encourages adaptive 
behaviors. One of the adaptive behavior Reef encourages is 

to change indoor clothing style. The suggestions are made in 
different ways. For example, in D2 Reef shows the 
appropriate clothing to wear at different setpoints; In D3 
Reef makes the suggestion more salient––users can pick a 
clothing option and Reef will adjust the setpoint to a 
corresponding temperature. Besides clothing level, we also 
explored other adaptive behaviors suggestions such as 
drinking a hot beverage (D6), walking at home for a few 
minutes (D12), lowering the setpoint in the morning when 
users are leaving soon for work (D13), and delaying the time 
to heat up one’s home after arrival (D15). 

Persuasive Strategy refers to the approaches used to promote 
energy-saving behaviors [7,10,11,14,26]. Froehlich et 
al. [11] highlighted two major strategies: Rational Thinking 
(RT) and Norm-Activation (NA): While some people might 
respond better to analytical insights, others might be more 
easily persuaded by emphasizing cultural norms and 
leveraging social influence. 

In our study, we probed different persuasive strategies to 
encourage saving. Besides information about financial 
savings, we explored the use of environmental impact 
framed under a 2015 U.S. government’s policy to reduce 
CO2 emission by 17% [31] (e.g., D2 and D4). In other 
prototypes, we showed users about friends that use a similar 
saving mode (e.g., “Mark and 33 others also use this mode” 
in D8), as well as adaptive behavior tips shared by 
households similar to the user (D14). These are also two 
examples demonstrating how we combined the eco-coaching 
style dimension with persuasive strategy to create the final 
prototypes. 

Timing of Interaction refers to the various situations in 
which users might interact with thermostats. We chose to 
explore five situations and created one user enactment 
scenario for each (as shown in Figure 2), including real-time 
control, short engagement, planning, misprediction and 
reflection. Although timing of interaction is slightly different 
from other design dimensions––in the sense that the options 
in this dimension are not mutually exclusive and can be 
supported by one thermostat––this dimension helps us 
understand if a particular approach that works well in one 
situation also works well in another. Here we briefly explain 
the first three situations while discussing misprediction and 
reflection in more depth. Note that all of our scenarios were 
created for winter settings. 

Real-time control (UE-RT) refers to the situation when one 
feels uncomfortable and wants to change the setpoint. In our 
scenario, a participant encounters this situation when 
watching TV in the living room. He feels cold and opens up 
Reef to see if he can make any adjustment. Short engagement 
(UE-ShortEngage) refers to the situation that a notification is 
sent from the thermostat to the user to encourage energy 
saving. In our scenario, a participant faces this situation 
when reading books in their study room. Reef recalls that she 
has been comfortable for a few days thus sends a message to 
encourage saving. Planning (UE-Planning) refers to the 



situation when one is thinking about next week’s plan and 
checking the thermostat schedule. In our scenario, a 
participant does this on Saturday night before going to bed 
or another self-selected time that the participant usually plans 
his next week’s schedule. 

Misprediction (UE-Mispred) refers to the situation that the 
thermostat inaccurately predicts an occupant’s comfort and 
makes an inappropriate decision or suggestion. In our 
scenario, while the participant feels cold and sick, Reef 
inaccurately predicts she is comfortable, thus suggesting her 
to lower the setpoint. From previous literature [15] we 
already knew that comfort prediction is not perfect, 
especially when people are sick, wear extra clothes, or are 
affected by other local factors that are challenging to track 
by sensors [15]. We were curious to explore how to work 
around technology constraints regarding comfort prediction. 
For example, a thermostat might apologize [30] and inform 
its users about its limitations when it makes mistakes (i.e., a 
form of incidental intelligibility suggested by Yang et al. 
[32]). We therefore created a prototype, D10, to present an 
implementation of incidental intelligibility and compared it 
with other designs (D11, D12) that do nothing when 
mispredictions happen. 

Reflection (UE-Reflect) refers to the situation when users are 
thinking about their long-term usage of the thermostats, 
reflecting on their practices, and reassessing actions they 
took. We designed a scenario where the participant has just 
finished checking their energy bill and becomes curious 
about the heater usage. We explored different ways to 
support reflection. This includes strategies to support data-
driven reassessment proposed by Yang et al. [34]. For 
example, in D13, Reef allows reassessment by tracking 
people’s in-home behaviors and their schedules. It shows a 
visualization depicting when the user is likely to go to bed 
based on behavior tracking. In some prototypes, Reef 
supports reassessment by considering other real-world 
factors. For example, in D15 Reef explains how colder 
temperatures cause additional heater usage, potentially 
helping users understand why their actions may not lead to 
the expected outcomes. In addition to supporting reflection 
by data-driven reassessment, we also explored the inclusion 
of a discussion board, D14, which helps users share and learn 
from peers about different ways to maintain their comfort 
while not turning their thermostat up. 

User Enactments Study 
Our interactions with study participants involved three steps: 
an initial interview, a diary study, and the user enactment 
sessions. The purpose of the initial interview was to 
understand how participants currently used their thermostats. 
This interview also shed light on how participants chose their 
default setpoints, their attitudes toward climate change and 
sustainability, and how they viewed the relationship between 
comfort and energy-saving. We then conducted a diary study 
lasting three to seven days. The purpose of this study was to 
raise participants’ awareness of their own temperature 
preferences, facilitating better feedback during the user 
enactments. We installed an experience sampling app, 
PACO [39], onto participants’ phones and gave them two 
thermometers to place in their homes. Participants were 
asked to report their comfort and the corresponding indoor 
temperature three times a day. On average each participant 
created 13 reports (min: 7, max: 24).  

After the diary study we then conducted the user enactments 
in our two-story smart home testbed (a.k.a. the first author’s 
home). Inspired by Rodden et al.’s [27] approach to ground 
participants, we presented a series of storyboards to 1) 
illustrate the current energy problem, 2) envision the future 
and introduce Reef, and 3) offer the context of enactment.  

We first introduced the problem––the high energy usage of 
heating systems at home and the variation in consumption 
caused by different usage practices [29]. We showed each 
participant an estimate of their potential financial savings 
using the average household size in our region of study. By 
factoring in the energy sources, we also illustrated the 
potential environmental impact a participant could make in 
terms of CO2 reduction. Finally, to offer a frame of reference 
for a possible environmental impact goal, we introduced the 
policy announced by the U.S. government in 2015 [31], 
which is to reduce 17% of CO2 emissions by 2020. We made 
a simplistic assumption that the domestic sector should 
contribute equally by reducing 17% of energy use. 

Afterward, we asked participants to envision the year 2020, 
four years in the future from the time of the study, and a new 
thermostat product, “Reef,” has been released. We described 
the key characteristics of Reef, namely its use of wearable 
and in-home sensors for predicting people’s comfort; the 
ways it learns from its users; its capability to predict whether 
residents are sleeping or away from home; and its support for 
user-defined Away, Awake and Asleep temperatures. 

 
Figure 2: Participants reacted to our prototypes in five different scenarios. From left to right: real-time control; short engagement; planning; 

misprediction and reflection.  Note that each UE took place in a different part of the home. 



We asked participants to imagine living in a smart home in 
February 2020, and gave them a simulated calendar showing 
what their daily schedules might look like at the time. They 
were also provided with a simulated weather app interface 
showing the “current” week’s weather ranging from 21 °F to 
55 °F. We also asked them to imagine living with another 
person in the house, either a partner or a roommate. After 
showing them this information, we asked them to walk 
through the scenarios we designed.  

As described earlier, we developed five scenarios and 
created three prototypes for each scenario. To ensure the 
session time was bounded in two hours, we let each 
participant experience a subset of 3-4 scenarios (thus each 
design was experienced by 7-8 participants and each 
participant experienced 9-12 designs). We showed one 
prototype at a time in a scenario, and we repeated the subset 
of scenarios three times to show all the design variations. In 
each scenario we first briefly explained the interface of the 
prototype and asked participants to interact with it. To 
increase realism, we tried to match the indoor temperature of 
our smarthome testbed with what was depicted on our 
prototype thermostat displays (within 1°F difference). At the 
end of the session, we then displayed all the 9-12 selected 
prototypes together for participants to compare. All of the 
user enactment sessions were video recorded for later 
analysis by the study team.   

Participants & Data Analysis  
We conducted our study with 11 participants. We recruited 
participants through emails, online forums, and social 
networking sites. Participants were compensated with $50 
for completing the interview, diary and UE study. Six males 
and five females participated in the study, representing a 
range of occupations including teacher, midwife, finance 
manager, school administrator, software engineer, among 
others. Most of them were between ages of 26-35 except for 
U6 (36-45), U7 (>55) and U11 (46-55). Only U8 owned a 
smart thermostat with the rest using either manual or 
programmable thermostats. The study was conducted from 
the end of April to the beginning of May 2016 where the 
average temperature in the region of the study was 52 °F 
(max: 79 °F, min: 28 °F). Thus people were still using their 
heaters at the time, though the outdoor temperature was 
somewhat warmer than the simulated temperatures depicted 
in the study. 

To analyze the data we conducted a debriefing session for 
each enactment within 48 hours. During the debriefing, three 
of the authors reviewed the whole video and discussed 
emerging patterns and questions to probe during later 
sessions. After all the UE sessions, we transcribed all the 
videos and conducted a thematic analysis [3] to identify 
common patterns in participants’ reactions and understand 
the underlying expectations and values. 

FINDINGS  
In the following section, we present three major themes that 
emerged in our thematic analysis: the desire for comfort and 

its relationship with sustainability; the desire for control and 
its tension with the desire for convenience (e.g., the desire to 
have the system make decisions); and the importance of  
careful allocation of agency while being pertinent.    

Comfort & Sustainability   
In this section we present findings related to short-term 
variation, adaptive suggestions, comfort visualization, and 
personalized saving modes which helped us uncover 
participants’ values regarding comfort and sustainability. 

Our design probe (D4) that encouraged short-term variation 
based on prior comfort history received polarized responses. 
Before user enactments, we expected participants to be fairly 
open to this suggestion because the suggestion was only 
triggered when they had been “comfortable” for five days. 
However, some participants felt that being comfortable now 
didn’t imply they should compromise their comfort in the 
future. According to U1, “That does not make any sense. If I 
feel comfortable in the past five days, then what I should do 
is just keep the same temperature, so that I can keep feeling 
comfortable.” Others were fine with compromising their 
comfort for a limited time. U2 said, “That’s fine [for me to 
live less comfortably for a day]. That’s reasonable and just 
for tomorrow. I think it’s like, five days I use temperature I 
like, and one day I lower it. It sounds OK. … Because I am 
not constantly sacrificing my comfort level, so it’s just 
temporary.” We suspect this discrepancy is due to 
differences around how our participants valued comfort. 
Although they all desired to be comfortable, some perhaps 
viewed comfort more as a necessity while some others 
viewed it as something more like a luxury. Participants who 
viewed comfort as more of a luxury might be more willing 
to compromise their comfort, as long as it’s temporary and 
as long as their comfort needs had been reasonably satisfied.  

In addition to short-term variation, some of our adaptive 
suggestions also shed light on the dynamic nature of comfort. 
Participants had different expectations of comfort at certain 
times of the day, such as in the morning when they are 
leaving home soon (e.g., it would be OK to lower the setpoint 
in the morning slightly earlier) or when they come back 
home (e.g., delaying the time to fully heat up home upon 
arrival.). U3: “I don’t mind waking up a little chilly” (D13); 
U9: “Well as long as it’s warmer than outside. [In February] 
it’s going to feel better than what we just came from. I think 
that would be a great solution that I heat up halfway and heat 
up rest of the way [after] I get home.”(D15) This suggests 
that although they valued comfort, their perception of 
comfort varied within a day. Thermostats designed to fit this 
dynamic expectation may increase the chance for savings.   

Most participants had a strongly positive reaction to the 
design (D1) that allowed them to view the comfort level of 
their roommate or partner. Three participants who currently 
lived with their partners specifically said they were willing 
to sacrifice their own comfort to keep their partner 
comfortable. U9: “I would probably just grab a blanket and 
leave how it is … I think a lot of changes in the thermostat is 



the regulation between my wife and myself and the baby 
honestly. But if I could see that me trying to get more 
comfortable would [de]crease hers that much … then I 
wouldn’t do it.” These participants valued some household 
members’ comfort more than their own.  

In UE-Planning, participants were shown a design (D8) that 
suggests three different energy-saving modes (e.g., “energy 
saving” and “regular”) that were personalized according to 
inferred comfort preferences. While we expected that such 
saving modes would encourage participants to explore a 
slightly more energy efficient setting, three of our 
participants raised a similar concern with this design. U6 
explained: "There [is] something interesting to me about 
describing the level as high saving, energy saving, very 
comfortable, … Because being very comfortable, is like a 
qualitative statement about my own personal experience of 
the temperature, these two levels describing high saving and 
energy saving feels distant from me. It shifts the priority from 
my comfort to external energy savings and so even though 
I’m motivated by it ... it seems like to put [me] in a conflict: 
saving energy or being comfortable." Whereas these 
participants valued both comfort and energy saving, and 
thought they could achieve both––“I can be quite 
comfortable in the colder [mode,  i.e.] in the energy saving 
to high saving [mode] with proper [clothing], like having a 
blanket, that to me is comfortable, I’m more comfortable in 
cooler environment anyway“ (U6). It seems that rendering 
energy saving and comfort in a mutually exclusive 
relationship created a conflict where none need exist.  

Control & Convenience 
A major question explored in our study is what types of eco-
coaching styles better fit participants’ values regarding 
control and convenience. We were especially interested in 
the intersection of eco-coaching style and the timing of the 
interaction.  

As we expected based on prior research, participants valued 
user control and favored a more advisory and informative (as 
opposed to proactive) approach when presented with short-
term saving opportunities in UE-ShortEngage. However, in 
the UE-Planning scenario, the majority of them preferred a 
more proactive Reef, even though in this prototype (D7) Reef 
activates an energy-saving schedule without asking 
participants’ permission. U6: “I don’t mind [Reef acting on 
my behalf] …I think it’s why people engage with smart 
devices in general. I think that’s part of the payoff. [That] is, 
you have this intelligent device using the data to make data-
driven decisions, but does not maximize unless it’s making 
the decision. So I want it to go ahead and use the data that is 
collected and I would have the real world experience of 
feeling it. And so if I don’t agree … [like] ‘oh gosh that was 
way too far to being cold’ then I know I can adjust it.” This 
indicates that participants’ values regarding comfort and 
convenience may shift based on interaction context. This 
openness to Reef’s proactivity was also contingent on their 
trust in the system’s capability to capture behavioral 

information, the value placed on convenience, and the ease 
of control. 

Prototypes (e.g., D8) featuring short-term variation also 
helped us uncover insights relating to the differing weighting 
of control and convenience among our participants. Our 
participants’ reactions toward short-term variation were 
polarized. Some favored consistency rather than variation. 
U7: "I guess that is [like] my eating philosophy, I have two 
days when I eat less and the other day I get [what] I want so. 
I can see that. But it seems like for the temperature I would 
rather find the lowest temperature during [a] day that are 
still comfortable. Try maximize that [aspect] as opposed to 
being uncomfortable on days.” This could be related to 
valuing convenience––they didn’t want to fiddle with the 
thermostat—, or could be related to the challenges of 
planning ahead. U6: “I don’t think I would pick two days a 
week [to be more energy-saving] … because I wasn’t sure 
what will make these two days [more] special than the rest 
of the days.” 

However, some participants thought it was possible to set 
some days to be more energy-saving than usual. U5: “I 
would consider [lowering the setpoint for a day every 6 
days].” Interestingly, this willingness to compromise 
comfort and convenience is also fluid and negotiable 
depending on different conditions. U5: “I think it also 
depends on, again, like, the temperature outside. If it’s going 
to be significantly colder, and then it asks me to lower the 
temperature tomorrow, I [would] probably say no. ... If I 
perceive it’s going to be colder, even though the inside 
temperature theoretically should stay the same… I don’t 
want be colder".  

Whereas the prototypes mentioned above were probed under 
the situations where Reef made accurate predictions, we also 
explored participants’ attitudes and values when 
mispredictions happened. We expected our “incidental 
intelligibility” [32] design (D10, UE-Mispred) to receive 
positive feedback from participants. In this enactment, we 
told participants to imagine that Reef had misjudged their 
comfort, and suggested lowering their setpoints while they 
were sick and cold. If they chose not to, Reef then showed a 
sample interface attempting to explain why it may have made 
that mistake. However, almost all the participants expressed 
that they didn’t even want to look at Reef’s explanation when 
they were sick and when Reef made a misprediction. U1, for 
example completely dismissed the explanation, saying that, 
“I don't’ want to debug it.” Participants’ first reactions were 
to just increase the temperature to a comfortable point––they  
didn’t necessarily want to fix Reef. This finding suggests that 
for some people, understanding the system models and 
capabilities is not as highly valued as we expected based on 
prior work (e.g., [32]). To them, convenience and error 
recovery are more important. 

However, some participants found that Reef’s transparency 
made it more considerate. U5: “I like this one better [D10] 
because it’s more honest…, it makes me feel like it does 



understand like you are a human, you are doing different 
things, different things might affect you, and we are an app, 
and we might not be able to get that all the time... It feels 
kinder, doesn’t feel quite as harsh” (U5). This transparency 
could also help users trust the thermostat more by mitigating 
the negative perception that might result from 
mispredictions. U4: “If I never knew that Reef knew that [i.e., 
its limitations], and I came to my own [conclusion] and said 
like ‘oh, Reef is terrible at figuring out when I am sick’ then 
that makes me lose faith in the device.”  

Impertinence, Irrelevance & Allocation of Agency 
By engaging participants through different scenarios and 
prototypes, we were able to gain insight into participants’ 
attitudes about the appropriate allocation of responsibility 
between a thermostat and its users. Finding the boundary 
between what is and isn’t appropriate for a smart thermostat 
to ask of its users is critical for mixed-initiative design, and 
more generally for designing technology that will be 
perceived as appropriate. 

Participants’ responses toward designs that suggest 
alternative indoor clothing were polarized (e.g., D3 and D7). 
Some expressed negative feedback on these designs because 
they thought they knew how to dress already. For some, such 
suggestions were seen as impertinent as they felt indoor 
clothing was a personal domain that the thermostat should 
not be involved with. U11: “It’s OK [for Reef to change] the 
temperature but I’m not very excited about it picking what 
clothes I want to wear. I find that’s more personal… part of 
yourself. Temperature, you know, in your house, that’s not 
part of you. What you wear, it’s part of you. If I want to feel 
comfortable today, I’ll wear this, if I don’t, if I want to wear 
shorts around, I will wear what I want to" (D7).” For others, 
clothing suggestions were acceptable but they were not 
enthusiastic about it as they had been wearing more layers of 
clothes at home already and viewed it mainly as reminders. 
Clothing selection, including what to wear at home, emerged 
as an area of personal choice incorporating lifestyle choice 
and personal expression, in addition to comfort preferences. 
The difference in reaction may be partly attributed to 
participants’ views of the role of the thermostat, e.g., as a 
passive instrument versus a cooperative agent.  

Besides clothing, the majority of participants reacted 
negatively to adaptive suggestions that required them to 
change their routines and living styles (e.g., D13, D14). 
Suggesting a move to a different room or exercising at 
certain time of the day to reduce heater usage are examples 
of such suggestions. Most of the user-generated tips we 
prototyped fell into this category. Participants hoped to see 
tips and suggestions that fit their current lifestyle. For 
example, U10 mentioned a tip he would like to share on the 
Reef forum (D14). After describing how warm he had to 
keep the house in order to keep his baby comfortable since 
safety guidelines prevent the use of blankets on infants, he 
added: “It’s like impossible. And we are on Amazon, and we 
found a wearable blanket that they can like clip on and zip 

into it, it’s like a sleeping bag, that’s attached to them, which 
then let us…keep us house colder,... If I was on this [forum], 
that would be a tip I would have.” This tip reflects a useful 
adaptive behavior tip that similar users would be more likely 
to accept. However, participants felt that tips that were 
irrelevant to them failed to resonate with their identity (e.g., 
as “parents”) and damaged their trust in the system. 

DISCUSSION 
Our findings allowed us to gain a deeper understanding of 
how various designs of comfort-aware eco-coaching 
thermostats might align with or oppose people’s values with 
respect to comfort, sustainability, convenience, control and 
agency. Here we discuss how our study extended or 
challenged insights produced from prior research, 
specifically in terms of coordinating comfort and 
sustainability, balancing control and convenience, and 
allocating of agency while avoiding impertinence. 

Coordinating Comfort & Sustainability 
While prior systems have incorporated comfort sensing for 
temperature automation in offices [9], there has been limited 
work investigating how people value comfort-aware systems 
in the home. Although we knew that people desire to be 
comfortable and hope to be environmentally 
responsible [33], it was unclear if people are open to smart 
thermostats that actively encourage sustainability while 
considering their comfort. Our study explored this question 
by surfacing comfort in different ways, including showing 
sensed comfort in visualizations (D1), suggesting short-term 
variation only when people have been comfortable for a few 
days (D4), suggesting adaptive behaviors when people may 
have a lower expectation on comfort (e.g., D15), and offering 
personalized saving modes (D8). 

First, our findings point out that for some people, the comfort 
of certain others is more important than individual comfort. 
Interestingly, while prior research [9] resolves multi-user 
conflict around comfort through automatically identifying a 
middle ground, our findings point to the possibility that in 
small households, visualizing comfort or using an important 
person as a reference might also be a solution, even a better 
outcome in some cases. In addition, our findings suggest that 
some people might value their comfort more as a necessity 
while others view it more as luxury. People who view 
comfort more as a luxury are more likely to compromise their 
comfort, and respond more favorably to recommendations of 
short-term variation. Furthermore, we found that while 
people desire comfort, their expectation and perception of 
comfort change throughout the day. This finding challenges 
previous measurements of comfort for smart thermostats: 
For example, PreHeat [28] aimed to optimize comfort by 
minimizing “MissTime”, which the authors define as the 
amount of time where the users are at home but the 
temperature does not reach the target temperature. Our 
findings point out that this measurement of thermostat 
efficiency is not in line with people’s changing expectations 
of their comfort. Finally, our design of saving modes raised 



some concerns. Inspired by the success of prior 
research [25,34], we chose to use a similar framing of saving 
mode suggestions (i.e., “energy saving”, “comfortable”). 
However, our findings point out that this framing renders 
energy saving and comfort in a mutually exclusive 
relationship. This implicitly highlighted conflict may steer 
people to weight their comfort as more important their 
adaptive potentials.  

Balancing Comfort & Convenience 
We knew from prior work that leaving users in control is 
essential, yet in a situation like thermostat scheduling, people 
appreciate some degree of automation [1,32]. However, 
these prior insights were produced from reactions to smart 
thermostats that take a passive stance on energy savings (e.g., 
Nest). We were unclear whether these insights would still 
hold for eco-coaching thermostats that actively probe 
comfort boundaries by lowering the setpoint. It was also 
unclear whether implementing incidental intelligibility 
would help strike a balance between convenience and 
control, making them more tolerant to a proactive design 
even in the face of mistakes.  

Our findings related to eco-coaching styles suggest that due 
to people’s value of convenience, many people are accepting 
of a proactive design when doing temperature scheduling. 
This is of course contingent on people’s trust in the system’s 
capability to make data-driven decisions, and the perceived 
ease of control if adjustments need to be made. Although 
people might still adjust the temperature back if they feel 
uncomfortable, this brings up an opportunity to view eco-
coaching as a negotiation process. Prior work has only 
explored eco-coaching in a more passive way [1,25,34], but 
our findings point to the potential for smart thermostats to 
negotiate a more energy-saving configuration by setting a 
first reference point.  

Our findings also point out that incidental intelligibility [32] 
was helpful for some participants, although error recovery 
was even more important when mispredictions happened. 
For these people incidental intelligibility helped them sustain 
their trust in the system. However, some other participants 
didn’t value intelligibility as highly as we expected. We 
suspect there are multiple factors that contribute to the 
observed reactions. These factors include context (i.e., 
participants were asked to imagine being sick), the nature of 
interaction (i.e., system-initiated push notification), and the 
presentation (i.e., verbal explanation). More research is still 
needed to see whether implementing incidental intelligibility 
in user-initiated actions, and with other forms of 
presentation, might yield better results.  

Being Pertinent & Respecting Allocation of Agency 
Researchers [4,5] have already proposed to incorporate 
adaptive thermal comfort into the design of energy-saving 
systems. However, it was still unclear to us how to 
operationalize this concept in an appropriate way that can 
result in a useful system. Our findings suggest the 

importance of making adaptive suggestions that are pertinent 
and relevant to people’s identity and situations.  

Our findings point out that supporting appropriate user 
agency in making personal decisions at home is critical. 
Indoor clothing suggestions, even for passive designs like D3 
and D7, might step into some people’s private domain and 
be perceived as impertinent. Our findings also point out that 
many people already engage in adaptive behaviors. 
Suggesting these already-familiar adaptive behaviors 
without bringing in new insights comes across as ignorant 
and does not represent an effective approach to impacting 
behavior. Further, it is important to offer adaptive 
suggestions that fit people’s lifestyles and routines. People 
are usually quite resistant to changing their lifestyle or 
routines. Many of the common adaptive behaviors 
mentioned in prior adaptive thermal comfort work (e.g., 
drinking hot beverages) elicited negative responses from our 
participants due to their highly user-dependent nature. 

LIMITATIONS 
The insights from our study were obtained through User 
Enactments, which involve short-duration engagements with 
possible future designs. We expect that users’ reactions to 
the designs proposed in our study would evolve during a 
longer engagement. Our prototypes were also all probed in a 
single-participant setting. While we did ask participants to 
envision co-habitation, and we designed our interfaces with 
multiple users in mind, our study did not capture the complex 
social dynamics that may emerge in a longer field 
deployment. Given the early stage of design for both 
comfort-aware and eco-coaching thermostats, however, we 
felt that an important first step would be to survey a broader 
set of potential design directions using an approach that gives 
us insight into the underlying expectations and values that 
would drive responses to different approaches, as such 
values would influence both immediate and longer-term 
reactions. We look forward to future research that addresses 
the evolution of usage and complex social dynamics at home 
in a long-term deployment.  

CONCLUSION 
This work represents the first attempt to explore the design 
opportunity of comfort-aware eco-coaching thermostats: 
smart thermostats that can understand occupants’ thermal 
comfort while persuading them to save energy. To research 
this opportunity, we created fifteen prototypes covering a 
diverse set of design attributes and conducted a user 
enactment-based study with 11 participants. Our study 
provides insights into how different designs of comfort-
aware eco-coaching thermostats might align with or against 
people’s values related to comfort, sustainability, control, 
convenience and allocation of agency.  
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