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ABSTRACT 
For decades, researchers have investigated ways to infer 
human thermal comfort. Studies have usually required 
cumbersome sensors and human observers, making them 
inappropriate for use in naturalistic settings such as the 
home. Emerging wearable and smart home sensing devices 
offer the opportunity to develop new models of thermal 
comfort based on data collected in-situ. To explore this 
opportunity, we deployed a sensing system in seven homes 
and collected self-report data from 11 participants for four 
weeks. Our system captures many factors employed in 
previous thermal comfort research, as well as new factors 
(e.g., activity level, sweat level). Machine learning-based 
models derived from the collected data show improvement 
over previous techniques, however significant prediction 
errors remain. In analyzing these errors we identify six 
problems that pose challenges for inferring comfort in the 
wild. Based on our findings, we suggest techniques to 
improve future in-situ thermal comfort modeling efforts.  
Author Keywords 
Smart home; thermal comfort; wearable sensors. 
ACM Classification Keywords 
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Miscellaneous. 

INTRODUCTION 
Researchers have been exploring ways to model human 
thermal comfort for more than 40 years. Such exploration is 
driven by the potential for increasing people’s quality of 
life (e.g., improving building comfort quality); reducing 
energy consumption (e.g., intelligent thermostats that react 
to people’s comfort level [9]); and advancing knowledge of 
the connection between physiological and psychological 
factors regarding comfort. While prior work on modeling 
thermal comfort such as Predicted Mean Vote (PMV) [8], 
and Adaptive Thermal Comfort [24] provide insights into 

the major factors affecting people’s comfort, there remain 
several challenges for inferring thermal comfort in real 
homes and offices. First, devices such as near-body 
temperature sensors traditionally used to collect 
measurement data are bulky and cumbersome for people to 
carry or wear on their body. Second, trained human 
observers or extensive questionnaires have generally been 
needed to record data that are difficult to detect with 
available sensors such as clothing insulation and activity 
level. Various activities at home such as cooking, dining or 
cleaning are known to affect one’s thermal comfort, but 
these factors have been difficult to capture without the 
presence of human observers. Finally, most of the previous 
models were designed to serve large groups of people (e.g., 
occupants of an office building) rather than individuals or 
small groups, and thus are not ideal for settings that contain 
only a few people, such as the home. 

These limitations have prevented researchers from 
developing techniques that could continuously infer one’s 
comfort in naturalistic settings, especially for places where 
people conduct varied activities and exhibit adaptive 
behaviors. Furthermore, these limitations make such models 
unsuitable for UbiComp applications such as intelligent 
thermostats that intend to improve occupants’ comfort by 
responding to present conditions [7]. 

Recently, wearable fitness trackers and smart home sensors 
have become widely available (e.g., Fitbit [31], 
SmartThings [32]). Although wearable fitness trackers are 
designed to monitor physical activities or health status, we 
observe that they could also capture several factors that are 
influential to human thermal comfort, such as activity level, 
ambient temperature, and sweat secretion. These emerging 
sensing devices provide the opportunity to address several 
challenges with prior approaches and permit the 
instrumentation of everyday home environments to gather 
data for inferring thermal comfort. By integrating 
commodity wearable and in-home sensors, we envision a 
system that is able to infer thermal comfort in-situ and at 
home with minimal setup and disruption.  

While we are not the first to consider comfort sensing in 
naturalistic settings, our work offers three novel 
contributions: First, we present a new technique to infer 
thermal comfort using off-the-shelf wearable and in-home 
sensors in a domestic environment. Using wearable sensors 
allows us to automatically obtain data important to inferring 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions 
from Permissions@acm.org. 
UbiComp '15, September 07 - 11, 2015, Osaka, Japan  
Copyright is held by the owner/author(s). Publication rights licensed to 
ACM. ACM 978-1-4503-3574-4/15/09…$15.00  
DOI: http://dx.doi.org/10.1145/2750858.2805831 

 



individual’s thermal comfort that was previously difficult to 
obtain, as well as new sources of data that could prove 
valuable including physical movement (which can be 
converted into Metabolic Equivalent of Task—a factor in 
PMV models), sweat level (inferred from galvanic skin 
response (GSR)), and skin temperature.  

Second, we demonstrate the feasibility of our technique by 
conducting a 4-week sensor deployment and ESM study 
[14] in seven households. The findings from our feasibility 
study validate the potential of this new technique in 
inferring personal thermal comfort at home under 
naturalistic conditions. 

Our third contribution identifies six situations that pose 
challenges for inferring people’s thermal comfort at home. 
We believe that these situations will be challenging for any 
system that aims to automatically infer thermal comfort in 
naturalistic settings.  

RELATED WORK  
Models of Thermal Comfort 
Numerous studies have been sought to improve our 
understanding of human thermal comfort. Such studies have 
covered the influence of physiological factors, 
acclimatization, and culture on thermal comfort [1–
3,8,16,17,26]. Researchers have investigated the effects of 
these factors in steady-state and in transition (e.g., changing 
from cold to warm) [12]; applied heat transfer theory to 
derive formulas for thermal comfort [8]; and used machine-
learning to infer comfort models [23]. While most of the 
early research regarded people as passive dwellers with no 
control of the environment, more recent studies have 
demonstrated the importance of viewing people as active 
agents who actively configure the environment to maintain 
their comfort level [24]. While it is impossible to discuss all 
the thermal comfort models explored in prior literature, we 
briefly describe two that are the most widely used and 
relevant to our work––Predicted Mean Vote (PMV) [8] and 
Adaptive Thermal Comfort [24].  

Developed by Fanger [8], PMV operates on the assumption 
that human thermal comfort is achieved when thermal load, 
skin temperature and sweat secretion are within a 
comfortable boundary, given an activity level. Based on 
these assumptions, the Predicted Mean Vote provides an 
index that combines six parameters deemed essential to 
thermal comfort––air and radiant temperatures, humidity, 
wind velocity, clothing level and metabolic rate. Given 
these parameters, the model can produce an index ranging 
from -3 (cold) to +3 (hot), indicating the thermal comfort 
quality of a building environment. Although this index has 
been shown to be accurate for buildings with central 
heating, ventilating, and air conditioning (HVAC) systems 
and to obtain the mean thermal comfort of large groups of 
people, it has not worked well for buildings without 
centrally-controlled systems or for individuals [17,24]. 

On the other hand, Adaptive Thermal Comfort [24] 
provides an explanation for why such deviation from PMV 
exists––people are actually more tolerant to warm and cold 
conditions than PMV predicts. The primary reason is that 
people adapt by various means, such as opening windows 
or changing clothes. This suggests that buildings that 
support adaptive behaviors, like the home, could allow a 
wider thermal comfort zone. 

Thermal Comfort Sensing at Home: Challenges and 
Opportunities 
In this work, we focus on inferring personal thermal 
comfort at home continuously while allowing occupants to 
behave naturally. This focus is important for three reasons. 
First, having a better technique to infer personal comfort at 
home could make a significant impact, as research has 
shown that people spend most of their time at home––
around 15.6 hours per day in the U. S. [20]. A better way to 
infer personal comfort at home could potentially improve 
the comfort of home residents. For example, intelligent 
thermostats could potentially be developed that react to 
occupants’ comfort level in real-time [9]. Second, to the 
best of our knowledge, there is no existing technique that 
allows inferring of thermal comfort at home while 
occupants are conducting their natural routines and 
exhibiting adaptive behaviors. Third, models such as PMV 
have been shown to be inaccurate for inferring comfort for 
a small group of people [17] The average U. S. household is 
only 2-3 people [33], a group too small for models such as 
PMV to make accurate inference.  

Additionally, there are two major barriers that limit 
previous research from reaching into everyday households. 
First, many previous studies relied on cumbersome 
equipment such as bulky near body temperature and 
humidity sensors [1,2]. These devices were inconvenient 
for users to carry continuously. Second, trained observers or 
extensive questionnaire were often required to collect data 
that are influential to inferring thermal comfort, but 
challenging to detect via sensors, such as activity level and 
clothing insulation [1]. Due to these barriers, it would be 
infeasible to apply previous sensing methods in UbiComp 
applications. For example, Clear et al. [7] have outlined 
several possible applications that use thermal comfort as a 
system input, including, for example, a thermal comfort 
portal that allows people to reflect on their practice of 
maintaining thermal comfort.  
Comfort Sensing Systems for Naturalistic Settings 
To infer human thermal comfort in naturalistic settings, 
sensors and other tools used for data collection must be 
minimally disruptive, blending into people’s everyday 
routines. Although a less explored area, some research has 
investigated various approaches to reach this goal. For 
example, Feldmeier and Paradiso [9] developed a system 
that continuously infers comfort in naturalistic settings. 
While their studies were conducted in an office setting, it 
would be feasible to apply their approach in the home, 
inasmuch at the sensors used are amenable to the home 



environment. They developed a machine learning-based 
model that predicts thermal comfort based on input from 
wearable and embedded indoor temperature as well as 
humidity sensors. The predictions were then used to control 
the HVAC system in a large (zoned) office building. 
However, their models incorporated limited physiological 
information since they collected only room temperature and 
humidity with the worn sensors. None of the other essential 
physiological factors such as metabolic equivalent were 
included in the models, nor were those factors captured by 
the sensors used in their study. Additionally, their system 
was deployed in an office building, thus how to adapt it to 
perform effectively in home is still a question.  

SPOT [13] and the system developed by Nouvel and Alessi 
[25] also aim at inferring personal comfort in naturalistic 
settings. SPOT uses the Microsoft Kinect’s skeleton 
tracking capability [30] for inferring metabolism. The 
system categorizes the skeleton information into four types 
of posture, namely reclining, seated and relaxed, sedentary 
activity, and standing. A predefined metabolic rate is then 
mapped to each of the postures. However, one’s metabolic 
rate might vary significantly in certain postures (e.g., 
“standing”), meaning that estimates can be wildly 
inaccurate. The system developed by Nouvel and Alessi 
expects people to provide explicit comfort feedback 
whenever their metabolic rate or clothing level is changed. 
Because people shift between different activities and 
clothing levels relatively often, asking people to report 
changes in their metabolic rate or clothing level would 
seem impractical for a sustained deployment. Finally, these 
systems have only been deployed in offices, and for only 
one or two participants. Therefore, it is unclear whether 
such systems would work in the home.  

In the following sections, we will first introduce our 
experimental system for investigating the potential of 
thermal comfort sensing in naturalistic settings using 
commodity wearable devices. Then, we will present our 
study method and the findings from our analyses.     

EXPERIMENTAL COMFORT SENSING SYSTEM 
To explore the potential of our approach, we developed an 
experimental system for collecting the required sensor data 
and user comfort feedback, as well as for performing the 
thermal comfort inference. Our experimental comfort 
sensing system contains five components: (1) HomeHub, 
(2) wearable sensors, (3) in-home sensors (4) a mobile ESM 
tool and (5) a web-based diary tool. After the introduction 
of these five components, the rationale for our sensor 
selection is then provided. 

HomeHub: The HomeHub is the central component for 
collecting data from the wearable and the in-home sensors. 
A notebook PC is used for the hardware of the HomeHub 
(we used an ASUS X200MA), and we built the software of 
the HomeHub on top of the Lab of Things framework [4].  

Wearable Sensors: We employ the Basis B1 [34], a wrist-
worn fitness tracker, for collecting data useful for comfort 
prediction. Several of the data sources provided by the 
Basis B1 (i.e., activity level, skin temperature, and galvanic 
skin response) have not been employed in previous efforts 
to predict thermal comfort in real time, and so represent 
new potential sources of information. Basis B1 measures 
skin and near-body air temperatures, galvanic skin response 
(GSR), heart rate, step count, and estimated calorie 
consumption, calculated once per minute. We use GSR to 
approximate sweat level. We further use the per minute 
calorie consumption offered by Basis B1 and the weight of 
the individual to approximate a person’s metabolic 
equivalent of task (MET). One study has shown that Basis 
B1 is able to estimate energy expenditure with 76.5% 
accuracy [21]. However, this study was conducted before 
the introduction of BodyIQ technology, which was 
available at the time of our study. In a forum post [35], the 
lead researcher of Basis claimed that with BodyIQ, the 
accuracy outperforms other major competitors, some of 
which claim around 90% accuracy. 

Basis B1 synchronizes with the user’s smartphone, which 
uploads the data to the Basis cloud storage. We 
automatically fetch the sensor data from Basis’s web 
service every 15 minutes, which is the maximum rate 
attainable via Basis’ API. 

In-home Sensors: We use the AeoTec MultiSensor [36] to 
track room-level air temperature and humidity. The 
HomeHub samples each MultiSensor every 3 minutes via 
Z-Wave. 

Mobile ESM Tool: To collect an individual’s thermal 
comfort feedback given different environmental and bodily 
conditions, we employed an Android-based Experience 
Sampling Method (ESM) tool called Minuku [5]. We 
configured Minuku to send brief questionnaires to 
participants based on time and location (e.g., “at home”). 
Each questionnaire asked for the person’s thermal 
sensation, comfort sensation, current activity, indoor 
location, clothing level, and brief notes that might help 
them recall the reasons for their sensation and comfort 
report when completing the end-of-day diary entry. We 

        
Figure 1: (Left) The ESM interface; (Right) The Web-based 

Diary Tool. 

 



developed our ESM strategy to minimize interruption, 
while collecting enough information related to people’s 
thermal comfort to help them to recall more in-depth 
information later in the day. Our implementation of ESM 
allows us to collect not just sensor data and user comfort 
feedback, but also users’ explanation of their perception, 
such as the reasons that might have caused their discomfort. 
This extra information allows us to investigate the 
feasibility of our technique in real households and identify 
potential challenges and opportunities for new approaches. 

Web-based Diary Tool: At the end of each day, 
participants were asked to provide more information to 
explain the thermal reports they submitted throughout the 
day. A web-based diary tool (see Figure 1, right) was 
designed to facilitate these diaries. This tool displays an 
individual’s thermal reports created throughout the day, as 
well as visualizations of the sensor streams that could help 
the person recall his indoor location and activity.  

Sensor Selection: We chose the types of sensors based on 
the widely-used PMV model, which states that the primary 
factors influencing a person’s thermal comfort include air 
temperature, radiant temperature, wind velocity, humidity, 
metabolic rate and clothing level. In addition to these six 
parameters, we also track skin temperature and sweat level, 
which are implicit in the PMV model: when calculating 
PMV, these two additional factors can be approximated by 
the six basic parameters using other models [8] developed 
in human thermal comfort, rather than directly measured.  

While some factors such as radiant temperature and wind 
velocity are challenging to track precisely, especially in 
large buildings or outdoors, our setting of a single family 
home allows us to make a few reasonable simplifications. 
First, we assume the radiant temperature is the same as the 
air temperature, since rooms in houses are relatively small. 
Second, we designate a fixed wind velocity (0.2 m/s) based 
on the average winds speed of indoor ventilation (between 
0.05 to 0.4 m/s) [27]. Finally, clothing level is obtained 
through participants’ self-reports, collected with each ESM 
response. Four options, ranging from nearly naked to heavy 
clothing level, were provided, along with examples. 

While PMV is known to have limited predictive power for 
individuals [24], we feel that the factors in the model are 
comprehensive and well-studied, thus serving as a good 
basis for our work. We will further discuss how we 
incorporate Adaptive Thermal Comfort and dynamic 
transitions by using a machine-learning based approach, 
along with a person’s previous body and environmental 
states in the data pre-processing section.  

STUDY METHOD  
The goals of our study were to explore the feasibility of our 
approach and to investigate the potential challenges of 
inferring thermal comfort at home in naturalistic settings. 
We recruited 14 participants from 9 households in 
Michigan. 11 of the participants from 7 households were 

able to complete the study. Three people dropped because 
of important family events that reduced the time they could 
stay at home. The recruitment was done through Craigslist, 
mailing lists and the snowball sampling method. We 
recruited participants who have an Android phone and who 
stay at home during waking hours for at least 5 hours a day 
on average. In addition, we recruited half of the households 
to have two participants in order to explore individual 
differences with respect to thermal comfort. Participants 
were compensated depending on the number of reports they 
provided during the ESM study. The amount of each person 
varied, with the average compensation being US$44.90. For 
households with multiple participants, we compensated 
each of them with US$10 extra. Table 1 provides an 
overview of participants and their household information. 

Our study took place between 30th August and 4th October, 

2014, and consisted of a semi-structured initial interview, 
followed by a four-week sensor deployment and ESM 
study. We then conducted exit interviews. During the initial 
interview, we collected information on participants’ daily 
schedules and how satisfied they were with regard to their 
thermal comfort in the different rooms in their houses. We 
used participants’ daily schedules to help determine the 
rooms in which to place the multi-sensors. Additionally, we 
also collected information on how they used their 
thermostats and other comfort-related appliances such as 
fans and dehumidifiers, as well as their attitudes towards 
the trade-offs between saving energy and remaining 
comfortable.  

After the interview, we installed 4 multi-sensors at different 
locations in each participating house and provided each 
participant with a Basis B1. Participants were asked to wear 
the Basis B1 whenever they were awake and at home. In 
addition, the ESM tool was installed on participants’ 
phones. To ensure every participant understood how to use 
the tools, we guided each of them to create one thermal 
comfort report using the ESM tool and to provide a detailed 
comment using the web-based diary tool.  

Parti. Gen
-der 

Valid 
Report
s 

House-
hold 

House Size 
(sqft) 

Adult 
(Child) 

Type of 
thermostat 

P1 F 187 H1 1400-2000 4  Manual 
P2 F 98 H1 1400-2000 4  Manual 
P3 M 138 H2 < 800 2  Manual 
P4 F 91 H2 < 800 2  Manual 
P5 M 143 H3 < 800 2* Manual 
P6 M 131 H4 1400-2000 2* Nest 
P7 F 113 H5 800-1400 2 Prog. 
P8 F 10 H6 800-1400 2 (1) Manual 
P9 M 2 H6 800-1400 2 (1)  Manual 
P10 M 107 H7 800-1400 2 Prog. 
P11 F 112 H7 800-1400 2 Prog. 

Table 1: Participant Information (*: one member left in the 
middle of the study; Prog: Programmable Thermostats) 

 



Immediately after the sensors were deployed, the ESM 
study was started. During the four-week ESM study period, 
participants self-reported their thermal sensation, comfort 
sensation, location within the home, and their activity 
information. Sensor data detected by the multi-sensors and 
Basis B1 were stored in our database. Participants were not 
exposed to any predictions we made, and no prediction 
results were used to make any changes to their home 
HVAC system during the study.  

For self-reports, we used both the 7-level thermal sensation 
index introduced in PMV, and also a standard 4-level 
comfort sensation index used in several thermal comfort 
studies (e.g., [12]). Using two indices allowed us to resolve 
the ambiguity of the labels in the thermal sensation index: 
for many people, the “cool” label might actually represent a 
comfortable and preferred feeling.  

Our ESM tool prompted each participant approximately 
every 30 minutes when s/he was at home and during a pre-
specified awake time window. Participants could ignore 
individual prompts, but they were expected to answer at 
least 6 reports per day. Participants could also actively 
report whenever they like, although we encouraged them to 
only initiate a report when they felt uncomfortable. At the 
end of the study, we found out that some participants had 
deactivated the GPS tracking of the ESM tool because it 
drained too much battery from the phone. Some of them 
therefore only initiated thermal reports, rather than 
responding to prompts. It’s possible that participants 
created different number of reports related to uncomfortable 
situations because of this issue, but we expect no effect  on 
the validity of their answers.    

A 30-minute exit interview was conducted following the 
ESM study. Before the exit interview, we calculated the 
PMV index of each thermal report a participant created 
using Fanger’s approach [8]. We used Fanger’s PMV rather 
than our own model’s prediction because our model was 
not finalized until after the exit interviews were conducted. 
While PMV is inaccurate for predicting individual’s 
thermal comfort, the calculations allowed us to investigate 
situations in which there were large differences between the 
PMV and participants’ reports. During the exit interviews, 
we asked participants to recall what happened at the 
moment of a report, and the potential reasons for the wrong 
PMV prediction. To facilitate recall, we asked the 
participant to review their diary entries and comments.    

DATA PROCESSING 
From the 11 participants who completed the 4-week study, 
we collected 1,431 thermal comfort reports (details are 
provided in Table 1). However, only 1,132 thermal comfort 
reports were considered to be complete–– i.e., containing 
all the associated information, including thermal sensation, 
comfort sensation, indoor location and activity, as well as 
data detected by sensors, including air temperature, 
humidity, skin temperature, near body air temperature, 

GSR, and metabolic rate at the moment of report. In 
addition, only 9 of the 11 participants created more than 90 
valid reports; the other two participants were not able to 
properly maintain the synchronization between their Basis 
B1 devices and smartphones due to software configuration 
issues, thus rendering many of their reports useless for 
training our models.  

The “comfortable” sensation dominated the reports: within 
the 1,132 reports, 50.6% of them are labeled as “neutral” on 
the thermal sensation index, and 76% of them are labeled as 
“comfortable” on the comfort sensation index. This may be 
due to the fact that the weather in the study area was 
unusually mild during the study period, with average 
temperatures at 16°C, (max 33°C; min 0°C). However, 
there was one week (13 Sep. to 20 Sep.) that the 
temperature dropped below normal. The average 
temperature in that week was 11°C (max 26°C; min 0°C).  

The percentage difference between thermal and comfort 
sensation also confirms the usefulness of having two 
indices. For example, some people interpreted “slightly 
cool” or “cool” as a comfortable and preferred temperature.  

Feature extraction 
For each of the reports, we further obtained features related 
to an individual’s previous state, including the metabolic 
rate, skin temperature, near body air temperature, and sweat 
level (GSR) 30 and 10 minutes before the report. For each 
of the features, we smoothed the data by taking an average 
over a five-minute window. These features were inspired by 
[12], which demonstrates that, in addition to the factors 
modeled by steady-state thermal comfort models like PMV, 
dynamic transitions between warm and cold environments 
also affect people’s thermal sensation. However, one 
problem we faced when extracting these features was that 
some reports had no data from the previous state. For 
example, when a participant had just woken up in the 
morning and worn his or her wearable sensors for just a few 
minutes, there would not be any sensor data available for 
the previous 15 minutes. To handle this problem, we filled 
in missing values with the average sensor reading for that 
participant. Finally, we extracted the temperature and 
humidity data by referencing the room information 
participants provided in the thermal report. We smoothed 
the room temperature and humidity data by taking the 
average over a 30-minute window. If the room did not 
contain a multi-sensor, we then averaged the sensor 
readings from the two adjacent rooms in which we had 
multi-sensors deployed. 

We further categorized the activity provided by the 
participants using their free text descriptions reported 
through the diary tool. As we already captured activity-
level through the measurement of metabolic equivalent of 
task, activity type information was collected primarily to 
investigate the psychological influence of activities. We 
generated our activity categories by combining the 



American Time Use Survey Activity Lexicon [29] with our 
own heuristics of which activities might effect an 
individual’s thermal comfort sensation, such as “cooking” 
(see Table 2).    

Thermal comfort index 
As no standard scale exists in the previous literature for 
training machine-learning based comfort models, we 
created a 5-level thermal comfort index for this work. Our 
5-level index combines the 4-level comfort sensation index 
suggested by Gagge et al. [12] and the 7-level thermal 
sensation index used in PMV. Table 3 illustrates the 
mapping from the thermal sensation and comfort sensation 
indices into our 5-level index. This mapping resulted in a 
scale ranging from, Uncomfortably-Cold (UC-Cold) to 
Uncomfortably-Warm (UC-Warm) at the extremes, with 
Slightly-Uncomfortably-Cold (S-Cold), Comfortable 
(COM), Slightly-Uncomfortably-Warm (S-Warm), as 
intermediate levels. 

The intuition behind this transformation is that thermal 
sensation alone cannot represent an individual’s complete 
thermal comfort assessment. For example, some 
participants actually interpreted “cold” as a comfortable 
feeling at times, and most of them enjoyed being “slightly 
cool”. Comfort sensation, on the other hand, only provides 
the intensity of discomfort, but not the direction of 
discomfort. However, from our exit interviews we found 
out that participants tended to have a common interpretation 
of the comfort sensation index. They interpreted 
uncomfortable as situations in which they would definitely 
take action to change the thermal environment, while 
slightly uncomfortable meant they were uncomfortable but 
did not experience an urgent need to take action. Therefore, 
by combining these two indices, we could obtain an index 
that captures both the intensity of discomfort and the warm-
cold direction of the discomfort. 

Besides the advantage of integrating the intensity and the 
warm-cold direction of discomfort, we believe our index is 
an improvement upon the 3-level scale used by Feldmeier 
and Paradiso, and the 7-level index used by Nouvel and 
Alessi [25]. First, compared to the 3-level scale, we allowed 
participants to report discomfort that was relatively 

tolerable (e.g., S-Cold, S-Warm), thus taking into account 

people’s tolerance to warm and cold situations, as 
suggested by Adaptive Thermal Comfort. Second, 
compared to the 7-level scale, we maintain a smaller set of 
thermal classes, thus facilitating the training of machine-
learning based models.   

ANALYSES & FINDINGS 
Two analyses were conducted in this research. In the first 
analysis, we developed our comfort model using a machine-
learning approach. We compared the accuracy of different 
feature sets, as well as the accuracy of our approach 
compared to other baseline models inspired by previous 
research [8,9]. In the second analysis, we explored the 
challenging situations for inferring thermal comfort at home 
in naturalistic settings by examining cases where our model 
failed to make an accurate prediction. 

Analysis 1: Accuracy of Comfort-Aware Model 
To develop our comfort model, one step is required before 
the training to handle our imbalanced dataset. In our 
dataset, 76% of the data are labeled as COM on our 5-level 
thermal comfort index as shown in Table 3. The remaining 
classes each cover between 4-8% of the data. To prevent 
training a classifier that always predicts comfortable, we 
adjusted the weight of each datum given its class to create 
equally balanced class labels (following [18]).  

Baseline models 
Random Forest and Gaussian-kernel SVM were selected to 
train our models, as these two methods are most likely to 
perform the best on various data sets [10]. Three models 
were chosen for comparison: the first is a ZeroR model that 
always predicts COM; the second is a decision tree model 
with the estimated PMV index as the only feature, chosen 
for testing the efficacy of PMV in predicting individual’s 
thermal comfort as inspired by [25]; the third model is a 
Gaussian-kernel SVM with humidity and near body air 
temperature (SVM-H/T) as the only two features. This final 
model is inspired by Feldmeier and Paradiso’s work [9], 
which is the only other work that uses wearable sensors for 
comfort sensing in naturalistic settings. In their work a 
simpler model, Fisher’s discriminant was adopted due to 
the requirement of monotonicity. This constraint was 
imposed because the end-goal of their system was to 
automatically control a HVAC system––monotonicity was 
required in their model to prevent hysteresis. Removing the 
monotonicity constraint allows us to employ more 

sophisticated and presumably more accurate models. We 

 
Comfort Sensation Thermal Sensation Thermal Comfort Index #reports %reports 

1 Uncomfortable/Very uncomfortable Cooler than neutral Uncomfortably cold (UC-Cold) 76 6.7% 
2 Slightly uncomfortable Cooler than neutral  Slightly uncomfortably cold (S-Cold) 43 3.8% 
3 Comfortable 

 
Comfortable (COM) 862 76.1% 

4 Slightly uncomfortable Warmer than neutral  Slightly uncomfortably warm (S-Warm) 61 5.4% 
5 Uncomfortable/Very uncomfortable Warmer than neutral Uncomfortably warm (UC-Warm) 90 8% 

Table 3: Frequency of reports for each level of our combined 5-level thermal comfort index. 

 

 

 

relaxing and leisure, working at home, eating, housekeeping, cooking, 
waking up, grooming, arriving home, socializing, exercising, sleeping, 
feeling sick, other 

Table 2: Activity Categories 

 



abandoned monotonicity because automatic temperature 
adjustment is not the only application that could be enabled 
by comfort sensing. Other research that is more interested 
in measuring the comfort quality of homes does not require 
an automatic agent to take actions. Even for applications 
like intelligent thermostats, mixed-initiative [15] 
approaches might be taken. Such approaches could benefit 
from a more accurate prediction while remaining tolerant to 
non-monotonicity. 

Since our class labels are ordinal in nature––there is a 
natural ordering of the classes from uncomfortably warm to 
uncomfortably cold––we therefore trained our multi-class 
classifiers on top of a simple ordinal classifier developed by 
Frank and Hall [11]. This ordinal classifier allows us to 
transform any multi-class classifier into a classifier for 
ordinal variables. Note that the class weight adjustment is 
applied on the 5-level thermal comfort index, rather than 
the multiple binary classification problems generated by the 
simple ordinal classifier.  

In addition to the prediction models, four different feature 
sets were investigated: (1) BASE; (2) BASE without 
clothing level (NO-CLO); (3) BASE with activity 
information (ACT); and (4) Basis B1 feature set (BASIS). 
The BASE feature set contains all the major parameters 
believed to influence a person’s thermal comfort. These 
features are provided by the multi-sensor, Basis B1, and 
participant self-reports. The NO-CLO contains all the 
features in BASE except for the self-reported clothing level. 
This was selected to test if using only sensor data is 
adequate for comfort prediction. ACT feature set contains 
all the features in BASE plus activity labels (again, see 
Table 2). ACT was included as we conjectured that the type 
of activity a person is conducting might change their 
expectation about the ideal temperature. Finally, the BASIS 
feature set was selected to test if using only wearable 
sensors would be adequate for comfort inference.  

Ten-fold cross-validation was performed on the whole 
dataset ten times, yielding 100 trials of model accuracy. We 
use Mean Absolute Error (MAE) and Mean Squared Error 
(MSE) as our evaluation metrics. While MAE is a standard 
way to evaluate ordinal variable classifiers, we included 
MSE to further penalize classifiers with large error, as we 
did not want our classifiers to predict cool while a person is 
feeling warm. Finally, the Wilcoxon signed-rank test is 
used to compare model accuracy. 

Result: SVM with BASE performs the best 
Table 4 shows the prediction results for each model. We 
found that SVM and Random Forest with BASE feature set 
perform very similarly to each other with respect to MAE, 
although SVM has significantly smaller MSE. Both of these 
models outperform the three baselines (p<0.01). Compared 
to the baselines, SVM with BASE reduces the MSE by 51% 
compared to ZeroR, 49% compared to DT-PMV, and 51% 
compared to SVM-H/T. SVM-H/T’s prediction result is 
very close to ZeroR, indicating that having only near body 
air temperature and humidity is not sufficient for predicting 
thermal-sensation at home, perhaps because people exhibit 
adaptive behaviors and conduct various activities. Overall, 
the relatively small MAE and MSE of our model indicates 
that it is able to control the prediction error to within one 
ordinal class distance most of the time––if a person is 
feeling comfortable, then most of the time the prediction is 
bounded between slightly uncomfortably warm and slightly 
uncomfortably cold.  

In addition, we also found that adding activity labels (e.g., 
“cooking,” “exercising”) directly as features did not 
improve the model. This could be because there are only a 
few thermal reports for each type of activity. Furthermore, 
particular activities may have different effects on different 
individuals. More advanced graphical modeling might be 
needed to utilize activity information for improving the 
models.  

Although the SVM model with BASE feature set performs 
significantly better (p<0.01) than the SVM model without 
clothing level information (NO-CLO), their errors are very 
close to each other––the MSE for BASE is 0.98 (SD=0.3) , 
whereas for NO-CLO it is 1.08 (SD=0.3). This similar 
performance may have resulted from relatively low 
diversity in clothing levels at home, or from participants’ 
inaccurate estimation of their clothing level. We will 
discuss the latter cause in the second analysis.   

Finally, we found that by using only features provided by 
Basis B1, the MSE is 1.35 times higher than SVM with 
BASE. It is surprising that even though Basis B1 is able to 
detect near body air temperature, having no room 
temperature and humidity information increases the error 
considerably. 

Analysis 2: Challenging Situations 
In our second analysis, we further investigated challenging 
situations for comfort inference. Specifically, we were 

 Machine Learning Models (RF: Random Forest) Baselines  
RF 
+BASE 

RF 
+NO-CLO 

RF 
+ACT 

RF 
+BASIS 

SVM 
+BASE 

SVM 
+NO-CLO 

SVM 
+ACT 

SVM 
+BASIS 

ZeroR SVM-
H/T 

DT-PMV 

MAE 0.76(0.15) 0.80(0.17) 0.75(0.15) 0.96(0.20) 0.73(0.12)* 0.77(0.12) 0.75(0.13) 0.91(0.11) 1.2(0.0) 1.20(0.03) 1.10(0.19) 
MSE 1.20(0.41) 1.31(0.48) 1.24(0.45) 1.84(0.73) 0.98(0.30)* 1.08(0.30) 1.07(0.33) 1.33(0.28) 2.0(0.0) 2.00(0.09) 1.92(0.78) 

Table 4: Mean Absolute Error (MAE) and Mean Squared Error (MSE) for Random Forest (RF) and Support Vector Machine 
(SVM) models with different feature sets. Three baselines are provided for comparison, as described in the text. The best 

performing model (SVM+BASE) is highlighted with a *. 
 

 

 



interested in knowing the situations and factors behind 
inaccurate predictions. 

To conduct such an analysis, we selected the best model 
obtained from our previous study, that is, SVM with the 
BASE feature set. To generate predictions for all the 
reports, we conducted two rounds of model training. First, 
we trained the SVM model by using 50% of the thermal 
comfort reports (training set), and then performed the 
prediction on the rest of the reports (testing set). We then 
trained another model based on the testing set and applied it 
to generate the predictions for the training set. Table 5 
shows the resulting confusion matrix. Note that with only 
50% of the data used for training, it is likely that our model 
would generate more errors than normal (e.g., if we had 
trained on 90% of the data as in our first Analysis), 
however, as our goal was to qualitatively analyze the 
potential situations for inaccurate prediction, we feel that 
the higher number of error cases is acceptable, albeit 
slightly less efficient.  

To investigate the challenging situations for comfort 
inference and identify potential solutions, we examined 
information from participants’ comments in their exit 
interviews, activity information in comfort reports, and raw 
sensor data.  

Challenging situations for prediction 
We identified 79 error cases where the prediction was more 
than two classes away from the true label, such as when the 
model generated UC-Warm while the true label was COM, 
S-Cold, or UC-Cold. The cells highlighted in Table 5 
indicate errors we investigated. Our qualitative analysis of 
the 79 errors allowed us to identify six situations that lead 
to inaccurate prediction: (1) short-term effect or local heat 
source; (2) dynamic transitions; (3) extra cover or wind 
effect; (4) light-weight exercising and housekeeping; (5) 
problems with data collection tool; and (6) individual 
differences.  

Short-term effect or local heat source refers to the situation 
where the indoor temperature is different from the current 
thermal sensation of the participant. For example, it might 
be because the participant was drinking a cold or warm 
beverage, close to a hot stove, or had just taken a shower. 
Under this situation, a participant’s near body air 
temperature and skin temperature might be within a 
comfortable zone, while the ambient temperature was low 
or high. For example, P3 commented “I felt warmer 
because I was reading the news and checking email with my 
laptop on my lap. Even though the room was still cool from 
earlier, the laptop made me feel warm and kept me 
comfortable.” He reported COM while the air temperature 
was 19.8 °C and his skin temperature was only 28 °C, thus 
making the prediction to be S-Cold. 

The second source of the prediction error is a result of 
dynamic transitions between cold and warm situations. We 
did not have enough thermal reports related to such 

transitions to train the model effectively for these cases. 
Furthermore, the sampling rate supported by Basis B1 (1 
minute) and our smoothing window (5 minutes) cannot 
capture quick transitions well. For example, one type of 
transition occurs when participants enter their warmer 
homes from colder outdoor environment. Since we 
conducted the study during late summer/early fall, there 
were only a few days that the outdoor temperature was low, 
thus such events are not well-represented in our training 
dataset. Another type of transition occurs when people 
move from a warm bed into a colder room. In this situation, 
participants usually had a high skin temperature from their 
cozy bed, while the room temperature at the moment 
captured by the multi-sensor was relatively low. This 
inconsistency confuses the model. For example, P4 
commented that “the room was [at] a comfortable 
temperature” with “waking up” as her activity. The room 
temperature at the time was only 18.9 °C, while her skin 
temperature 15 minutes before the report was 31 °C, which 
is an unusually high skin temperature. Therefore the model 
predicted she felt UC-Cold, while she actually felt COM.  

A third cause of prediction error is when a person might 
have extra cover that was not included in their self-reported 
clothing level, or might have been affected by un-captured 
wind effect. For example, P11 commented that “The puppy 
was in my lap, which warmed me up” in one case, and 
noted “Was still in bed under heavy blankets” in another 
report. Additionally, certain locations where participants 
spent time could have an effect, as an upholstered sofa or 
carpet can effectively increase a person’s clothing level 
[22]. Additionally, our simplified assumption about 
constant indoor wind velocity occasionally led to prediction 
problems. For example, P1 commented that she had her fan 
on while her skin temperature was 33.7 °C and the air 
temperature was 27.8 °C. The model predicted she felt UC-
Warm due to the high temperature while she reported 
comfortable due to the additional wind effect.    

The fourth type of error occurs when an individual is doing 
light exercise or housework during cool days, including 
activities like moving objects around the house, performing 
small household repairs, or simply walking around the 
house. In such cases, an individual might have higher 
clothing level and slightly higher approximated metabolic 
equivalent while the other metrics are still low, resulting in 
a prediction that is cooler than what the individual actually 

       Prediction 

True 

UC-
COLD 

S-
COLD 

COM S-
WARM 

UC-
WARM 

UC-COLD 8 17 0 0 0 
S-COLD 7 39 15 8 0 
COM 22 186 410 271 10 
S-WARM 3 8 17 64 7 
UC-WARM 2 1 2 26 9 

Table 5: Confusion Matrix (Cells highlighted in gray 
represent the cases used for our fault analysis.) 

 

 

 

 

 



perceives (e.g., predicting COM when the participant 
reports UC-Warm). Here, it could be that the high clothing 
level amplifies the effect of the slightly heightened 
metabolic equivalent. Although the PMV index, a feature 
included in our machine-learning based model, is supposed 
to capture such interaction between clothing and 
metabolism, the misprediction may be generated either 
because of the inaccurate estimation of the clothing level 
from the participants, or because of the low skin and air 
temperatures.     

There were problems with the data collection tool and data 
handling. For example, there were several instances that 
participants did not wear their Basis B1 or had just started 
to wear it, thus the inaccurate prediction is due to our naive 
way of handling missing values (i.e., fitting the mean value 
obtained from all the reports of a participant). In addition, 
participants may have interpreted the rating scales in 
different ways at different times. For example, P11 reported 
her comfort sensation as “slightly uncomfortable” due to 
the fact that she felt warm. However, she also labeled 
thermal sensation as “slightly cool” due to the fact that she 
had just drunk a bottle of cold water. The correct labels to 
train our model should be “slightly uncomfortable” for 
comfort sensation and “slightly warm” for thermal 
sensation, as the “uncomfortable” feeling was caused by the 
warm temperature. Therefore, the ambiguity in the 
interpretation of the data collection instructions caused the 
inaccurate prediction.   

Individual differences include the tolerance of heat, cold, 
sweat and humid environments and the different 
interpretation of the comfort and thermal sensation scales.  
For example, P10 reported “comfortable” with comment 
“At the desk, my hands were getting cold. I am used to my 
hands getting cold, though, so it wasn't uncomfortable.” As 
his estimated skin temperature was 26.7 °C and the room 
temperature was 16.5 °C, which is below the typical 
comfort zone for most people, the model incorrectly 
predicted UC-Cold. In another case, P1 reported that she 
felt comfortable after she had exercised at home. The model 
wrongly predicted her comfort level as UC-Warm as her 
skin temperature and the air temperature were high––32.6 
°C and 28.56 °C respectively––as was her metabolic 
equivalent. Finally, another source of individual difference 
is sickness. P11 was sick for more than two weeks during 
the study, thus her perception and body conditions were 
different than normal. In one thermal report with mild air 
temperature at 21 °C, she noted “[I felt the body] 
temperature went up because I was feeling sick due to a 
bad headache.”   

DISCUSSION 
Our work shows that sensing thermal comfort in the wild is 
promising, but challenges remain. Widely used comfort 
models and prior techniques that aim at inferring comfort in 
naturalistic settings are insufficient for inferring 
individual’s thermal comfort at home. In fact, our result 

shows that these previous techniques––mostly designed for 
large buildings and offices––did not perform better than a 
naive ZeroR baseline. The dynamic nature of home 
activities and people’s adaptive behaviors make comfort 
inference much more difficult in the home than in climate 
chambers and in offices.   

In an effort to infer thermal comfort at home that allows 
domestic residents to live naturally, we proposed a new 
technique that uses wearable fitness trackers and in-home 
sensors to capture various factors that are underexplored in 
previous in-situ sensing research. By incorporating 
metabolic equivalent, sweat, and skin temperature sensors, 
we saw that our technique can reduce prediction error by 
50% compared to the baseline models. In addition, our 
result shows the benefits of having both wearable and in-
home sensors. Having only one type of sensor is not 
sufficient to predict comfort accurately. While wearable 
sensors are useful to obtain continuous activity-level, sweat 
and temperature measurements, they are ineffective at 
capturing the larger thermal comfort picture of the room. 
Moreover, it would be challenging for the wearable device 
to understand a transition such as getting out from under a 
warm comforter in a cold winter while one wakes up. On 
the other hand, having only in-home sensors is insufficient 
for capturing discomfort caused by high activity-level and 
transitions, such as coming back home from exercising. 

While we are interested in understanding more specifically 
which temperature sensors (i.e., skin, near-body and room 
temperatures) are most critical, our analysis is inconclusive. 
However, our work is the first step towards understanding 
the benefit of utilizing these various sensors in reaching 
better prediction accuracy. We would argue, however, that 
future work on in-situ sensing should have all three types of 
sensors, as the combination of the three could potentially 
help identify various situations. For example, whether users 
are close to any local heat source could potentially be 
identified by the combination of near-body and room 
temperature. Clothing level might potentially be inferred by 
the difference between skin and near-body temperature, as 
explored by SPOT [13].  

Implications for Improving Thermal Comfort Inference 
While there are still some challenging situations for 
inference, a closer look at the reports reveals that many of 
these situations could be easily resolved, and some of them 
could potentially be tolerated depending on the intended 
application.  

First, several of the errors resulted from the way we handle 
missing data and the way we collect thermal comfort 
feedback. Note that while we did throw out a report if the 
user was not wearing the Basis B1 at the time, missing data 
was filled in for reports that are associated with users just 
starting to wear Basis B1 (e.g., when they woke up in the 
morning), as we didn’t want to overlook these important 
moments. When deploying an application based on such a 
sensing technique, we could easily remove such errors by 



checking whether the users have been wearing their 
wearable tracker for a certain period of time. Alternatively, 
sensor data from previous days that share similar activity 
patterns could be used to fill in the missing sensor data. For 
the problem with inconsistent labeling, we could revise the 
ESM interface to insure the warm-cold direction of the 
comfort sensation is the same as thermal sensation. For 
example, we could ask a clarifying question such as, “Do 
you want the temperature to be cooler or warmer?“   

The errors related to rare or quick transitions could 
potentially be resolved by increasing the sampling rate of 
wearable sensors, along with better handling of time series 
data. Currently the Basis B1 has a sampling rate of one time 
per minute––note that this is the sampling rate accessible by 
3rd party developers rather than the true sampling rate of the 
sensors––which is due to its focus on fitness related 
applications. On top of this relatively low sampling rate, 
our five-minute smoothing window makes quick transitions 
harder to observe. To better identify transitions between 
cold and warm environments or the presence of additional 
heat sources, the variance of the sensor reading along with 
the mean we use in this study could be used. In addition, 
activity recognition techniques could be applied to identify 
some transitions such as home/away status [6]. 
Furthermore, if comfort sensing techniques such as ours 
become useful, it is possible that wearable sensor 
manufacturers would broaden their services to include 
comfort sensing, thus tailoring their device to serve such a 
purpose––e.g., by allowing 3rd party developers to access 
sensor data in real-time. Finally, a larger deployment with 
more data to train the models might help to model relatively 
rare transitions.  

Two other challenges we identified include extra “clothing” 
and wind effects that were not captured by the sensors or by 
users’ self-reports. Through additional insights gained from 
the exit interviews, we found that whether or not people 
have extra covering is sometimes related to their locations 
in the room. For example, P11 usually had her blanket on 
when she sat on the sofa in her TV room. This suggests it 
might be possible to infer people’s extra clothing level via 
part-of-the-room indoor positioning, although it would 
require additional training data from each of the 
individuals. However, we also found that when such extra 
clothing exists, the difference between the near body 
temperature detected by Basis B1 and the air temperature 
detected by the multi-sensor is larger. We could potentially 
use this information to help us identify if extra clothing 
exists. 

Finally, individual differences might be resolved by taking 
a personalization approach. However, the standard ways of 
training personalized models––such as generating a model 
for each individual based on one’s own data––may not be 
feasible for our approach since the number of reports 
required to cover all five thermal comfort labels at a 
sufficient level may be excessive. While such isolated 

models may not work for our approach, “Groupization” 
could be a better solution as it seeks to build personalized 
models for an individual by using data from other similar 
people. This approach has been used in personalized 
information retrieval [28] and activity recognition [19] 
systems, and is particularly suitable for our application 
scenario where the training data provided by each 
individual is minimal. Groupization reduces the amount of 
feedback an individual needs to provide in order to train the 
model, while improving upon the prediction accuracy based 
on a population-based model.  

Limitations 
There are a few limitations of our study. First, study was 
conducted at the end of the summer/beginning of fall when 
the temperature was relatively mild. Further deployment is 
needed to inspect the feasibility of our approach in more 
extreme weather, as seasonal difference might be an 
important factor to include in the model. In addition to the 
relatively short deployment conducted in the summer, our 
thermal comfort reports are only provided by 9 participants, 
a small population. More research is needed to consider the 
role of individual difference and to validate if this approach 
could work for a larger group of people.  

Although extensive collection of thermal comfort feedback 
from each individual is required in our experimental 
system, we envision the future system in which online 
inference could rely on a small group of users who provide 
feedback for training a population-based model. If 
derivation from the population-based model is found, the 
system could then prompt a user for more comfort feedback 
in order to create a personalized model or reassign them to 
a more appropriate group.  

CONCLUSION 
In this paper, we present a new technique for inferring 
people’s thermal comfort at home under naturalistic settings 
using in-home sensors as well as off-the-shelf wearable 
devices equipped with sensors that allow estimations of 
metabolic equivalent, sweat and skin temperature. A sensor 
deployment and experience sampling study was conducted 
in 7 households with 11 participants to validate the 
potential of such approach. Our study results reveal the 
advantages of this approach, challenging situations for 
prediction, and potential directions for improve in-situ 
comfort sensing at home. 
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